TETRAHEDRON

LETTERS

Pergamon Tetrahedron Letters 40 (1999) 3203-3206

Synthesis and Redox Properties of a Diphosphene
Carrying a Redox-Active Sterically Protecting Group

Kyoko Tsuji, Shigeru Sasaki, and Masaaki Y oshifuji*

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan

Received 16 December 1998; revised 25 February 1999; accepted 26 February 1999

Abstract

The 2,6-dimesityl-4-[bis(4-methoxyphenyl)amino]phenyl group was developed as a sterically protecting group
carrying a reversible redox site at the 4-position and was applied to the construction of a novel redox system
composed of the diphosphene and triarylamine units. © 1999 Elsevier Science Ltd. All rights reserved.
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Kinetically stabilized diphosphenes by sterically protecting groups, such as the 2,4,6-tri-z-
butylphenyl [1] or tris(trimethylsilyl)methyl [2] group, are known to be reversibly reduced to
give stable radical anions [3]. They are candidates for a component of functional molecules,
such as redox sites of a multi-step redox system or spin centers of high-spin organic
molecules. Recently, we [4] and others [5] have applied the 2,6-dimesitylaryl sterically
protecting groups, which can be easily synthesized by the Hart reaction [6], to the
stabilization of diphosphene and phosphaarsene. On the other hand, these compounds have
already been used as protecting groups for low coordinated main-group elements as well as
transition metal compounds as demonstrated by Power et al. [7]. As compared with the
2,4,6-tri-s-butylphenyl group, the 2,6-dimesitylaryl groups are assumed to have comparable
bulkiness and less reactivity at the ortho substituent, judging from the reactivity of the
corresponding phosphorus and arsenic compounds [4]. Furthermore, it should be mentioned
that, from the synthetic viewpoint, the advantage of their employment would be the ease of
introduction of functional groups at the 4-position of the aryl moieties. In this
communication, we report the development of the 2,6-dimesityl-4-[bis(4-
methoxyphenyl)amino]phenyl group, which is regarded to act not only as a sterically
protecting group but also as a reversible redox site, and the application to the construction of
a novel redox system composed of the diphosphene and triarylamine units.

Preparation of the 2,6-dimesityl-4-[bis(4-methoxyphenyl)amino]phenyl group is shown in
Scheme 1. The Hart reaction [6] of 2,4,6-tribromoiodobenzene [8] with the mesityl Grignard
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reagent, followed by the reaction with iodine, afforded bromoiodobenzene 11, though the
yield of 1 was suppressed by unknown side reactions. The bromine atom at the 4-position of
1 was then replaced with iodine by refluxing in dimethylformamide in the presence of large
excess of both Cul and KI [9]. Diiodobenzene 22 is a synthetic key intermediate for
introducing a functional group at the 4-position of the sterically protected position, since
iodine at the less hindered position can be selectively replaced with several functional groups
by a variety of methods. For example, lithiation of 2 with butyllithium at ~78 °C in THF,
followed by quenching with water, afforded 2,6-dimesityliodobenzene [6] almost
quantitatively and the lithiation of 2 followed by addition of CuCl; gave the novel sterically
protecting group 43 in 55%, where two hindered sites are linked by the 4,4'-biphenylene
bridge. The Ullmann coupling also selectively proceeded at the less hindered position, and
the copper-mediated coupling of 2 with bis(4-methoxyphenyl)amine in the presence of 18-
crown-6 [10] afforded aminoiodobenzene 34 as a stable colorless solid.
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Although 3 was converted to the corresponding dichlorophosphine 55 almost
quantitatively by the conventional method [1], reductive coupling of 5 to diphosphene 7 was
not successful in the presence of magnesium metal [1] probably due to the low reactivity of 5.
However, the reaction of a mixture of § and 0.7 molar amount of dichloro(2,4,6-tri-¢-
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butylphenyl)phosphine [1] with magnesium afforded a mixture of unsymmetrical diphosphene
6,6 symmetrical diphosphene 7,7 and 8 [1] in a ratio of 1:0.6:0.8 based on the 31P NMR
spectrum among other products (Scheme 2). Only 6 was isolated in the pure state from the
mixture by repeated column chromatography on silica gel (hexane / benzene = 1 /1 with a
small amount of triethylamine) and GPC (Jaigel 1H + 2H / chloroform). Symmetrical
diphosphene 7 could not completetly be separated from a by-product such as bis[2,6-
dimesityl-4-{ bis(4-methoxyphenyl)amino } phenyl]diphosphane.

Diphosphene 6 was characterized by a 3!P NMR signal at low field and a large coupling
constant 1/pp, typical values for unsymmetrical diphosphenes [11] [8p 453 (d, L/pp = 575
Hz), 530 (d, lJpp = 575 Hz)]. As expected, 6 gave a two-step reversible cyclic
voltammogram at —78 °C (Figure 1), where the oxidation of the nitrogen and reduction of
the phosphorus-phosphorus double bond appeared at E1/2 = 0.49 and —2.19 V vs. Ag / Ag*,
respectively, although the redox wave at E1/2 = 0.49 V became irreversible at 293 K. The
redox potential of the phosphorus-phosphorus double bond (E1/2 = -2.19 V) was nearly equal
to those of 8 (E12 = -2.16 V) [3] and bis(2,6-dimesityl-4-methylphenyl)diphosphene (E1/2 =
-2.16 V) [4, 5], measured under the identical conditions. The orthogonal alignment of the &-
electron systems of the aromatic ring and the phosphorus—phosphorus double bond in
diphosphenes carrying the aromatic bulky substituents [1] might cause the amino group at the
4-position to have only a slight effect on the redox properties of such diphosphenes. On the
other hand, introduction of the phosphorus-phosphorus double bond at the 4-position of the
amino group destabilized the corresponding radical cation. The effect of the amino group
was most clearly demonstrated by the UV-Vis spectrum (Figure 2), where introduction of the
amino group caused a red shift of the n-n* and n-n* transition [Amax (logé€) in hexane: 6; 398
(3.70), 468 (3.45): 8 [1]; 343 (3.81), 463 (2.90)]. A hexane solution, mainly composed of 7,
clearly showed a red color with Amax as 446 and 504sh, which suggested a further red-shift
due to the second amino group. Thus, the color of the diphosphenes could be modified in a
similar manner as azo dyes.
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Figure 1 Figure 2
Cyclic voltammogram of 6 at =78 “C. 1 mmol L! in THF with 0.1 UV-Vis spectra of diphosphenes 6 and 8 in hexane.

mol L-! n-Bu,NCIO,. Working electrode; grassy carbon, counter
electrode; Pt, reference electrode; Ag/0.01 mol L-! AgNO, /0.1
mol L-! n-Bu,NCIO, / CH;CN. Scan rate; 30 mV sec.

In conclusion, we have developed a novel sterically protecting group possessing a
reversible redox site at the 4-position of the protected functional group, and constructed the
functional diphosphene possessing unique redox as well as optical properties. The
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fundamental molecular design and synthetic strategy shown in this work can be applied to a
variety of low-coordinated functional groups and pave the way to a new class of multi-

functional molecules.
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11: Colorless prisms (hexane), mp 107.0 °C; 'H NMR (200 MHz, CDCl3) 6= 2.00 (12H, s), 2.35 (6H, s), 6.96 (4H, br.s), and
7.26 (2H, s); 13C{1H} NMR (50 MHz, CDCl3) & = 20.2, 21.2, 106.3, 122.8, 128.1, 130.5, 135.1, 137.6, 140.7, and 149.0.
Found: C, 55.43; H, 4.78; 1, 24.58%. Calcd for Co4Ho4Brl: C, 55.51; H, 4.66: I, 24.44%.

22: Colorless needles (hexane-benzene), mp 250.0-251.0 °C; 'H NMR (200 MHz, CDCl3) 6 = 1.99 (124, s), 2.34 (6H, s), 6.95
(4H, br.s), and 7.43 (2H, s); 13C{1H)} NMR (50 MHz, CDClI3) =203, 21.3, 94.5, 107.8, 128.2, 135.2, 136.4, 137.6, 140.6, and
149.2. Found: C, 50.89; H, 4.16; 1, 44.84%. Calcd for Co4Hp4la: C, 50.91; H, 4.27: 1, 44.82%.

34: Colorless needles (hexane-benzene), mp > 300.0 °C; 1H NMR (200 MHz, CDCl3) 8= 2.03 (24H, s), 2.35 (12H, s), 6.97 (8H,
s), and 7.32 (4H, s); 13C{1H} NMR (50 MHz, CDCl3) 6 = 204, 21.2, 106.9, 1259, 128.1, 135.3, 137.3, 140.2, 141.7, and
147.8; MS (FAB) m/z (rel intensity) 879 (M*+1; 56%), 878 (M™*; 48), 752 (M*—126; 100), and 626 (M*+-252; 69).

43: Pale yellow solid, mp 141.0-142.5 °C; 'H NMR (200 MHz, CDCl3) 8 = 2.07 (12H, s), 2.34 (6H, s), 3.79 (6H, 5), 6.74 (2H,
5), 6.82 (4H, dm, J = 9.0 Hz), 6.95 (4H, br.s), and 7.10 (4H, dm, J = 9.0 Hz); 13C(1H} NMR (50 MHz, CDCl3) 6 = 20.2, 212,
55.4,95.2, 114.8, 119.9, 1265, 127.9, 135.3, 137.0, 140.5, 142.1, 147.1, 149.5, and 156.0; MS (EI, 70 eV) m/z (rel intensity)
667 (M*; 100%), 652 (M*-15; 8), and 540 (M*-127; 6). Found: m/z 667.1948. Calcd for C3gH38INO2: M, 667.1948.

55: Brownish yellow oil; IH NMR (200 MHz, CgDg) 8 = 2.09 (6H, s), 2.27 (12H, s), 3.11 (6H, s), 6.56 (4H, d, J = 8.9 Hz), 6.74
(4H, s), 6.90 (2H, d, J = 2.9 Hz), and 7.02 (4H, d, J = 8.8 Hz); 31P NMR (81 MHz, CsDg) 8 = 163 (s); MS (EL, 70 V) m/z (rel
intensity) 643 (M*+2; 16%), 642 (M*+1; 10), 641 (M¥; 22), 626 (M*-15; 5), 571 (M*=70; 4), 542 (M+-99; 24), 541 M+-100;
48), and 526 (M*-115; 8).

66: Reddish-orange solid (hexane-benzene), mp 203.5-204.5 °C (decomp.); 'H NMR (600 MHz, CDCl3) é = 1.01 (18H, s), 1.27
(9H, s), 2.14 (12H, ), 2.26 (6H, 5), 3.78 (6H, ), 6.67 (2H, 5), 6.79 (4H, br.s), 6.80 (4H, dm, J = 8.9 Hz), 7.09 (4H, dm, J = 9.0
Hz), and 7.25 (2H, s); 13C{1H) NMR (150 MHz, CDCl3) § = 21.0, 21.3, 31.3, 33.8, 34.6, 38.1, 554, 114.7, 121.3, 122.0,
126.4, 128.4, 132.6 (d, Jpc = 45 Hz), 135.5, 136.5, 137.6 (d, Jpc = 64 Hz), 139.4, 140.7, 1449, 148.9, 149.5, 153.3, and 155.8;
31p NMR (81 MHz, CDCl3) 8 = 453 (d, Jpp = 575 Hz) and 530 (d, Jpp = 575 Hz); UV-Vis (hexane) A (log €) 315 (4.51), 398
(3.70), and 468 (3.45) nm; MS (E, 70 eV) m/z (rel intensity) 848 (M*+1; 20%), 847 (M*; 35), 791 (M*-56; 10), 790 (M*-57;
10), 602 (M*-245; 8), 572 (M*-275; 100), 556 (M+-291; 29), 539 (M*+-308; 7), and 276 (7).

77: Red solid; 1H NMR (200 MHz, CeDg) 6= 2.00 (24H, 5), 2.18 (12H, s), 3.15 (12H, ), 6.55 (8H, dm, J = 9.0 Hz), 6.70 (8H,
s), 6.90 (4H, s), and 7.02 (8H, dm, J = 9.0 Hz); 31P NMR (81 MHz, Cg¢Dg) 6= 487 (s); MS (FAB) m/z (rel intensity) 1143
(M+41; 14%), 1142 (M*; 15), 602 (M*-540; 35), and 572 (M*-570; 100).



